Numerical quasilinearization scheme for the integral equation form of the Blasius equation
author
Abstract:
The method of quasilinearization is an effective tool to solve nonlinear equations when some conditions on the nonlinear term of the problem are satisfied. When the conditions hold, applying this technique gives two sequences of coupled linear equations and the solutions of these linear equations are quadratically convergent to the solution of the nonlinear problem. In this article, using some transformations, the well-known Blasius equation which is a nonlinear third order boundary value problem, is converted to a nonlinear Volterra integral equation satisfying the conditions of the quasilinearization scheme. By applying the quasilinearization, the solutions of the obtained linear integral equations are approximated by the collocation method. Employing the inverse of the transformation gives the approximation solution of the Blasius equation. Error analysis is performed and comparison of results with the other methods shows the priority of the proposed method.
similar resources
The Blasius equation
The Blasius problem f ′′′ + ff ′′ = 0, f(0) = −a, f ′(0) = b, f ′(+∞) = λ is investigated, in particular in the difficult and scarcely studied case b < 0 λ. The shape and the number of solutions are determined. The method is first to reduce to the Crocco equation uu′′ + s = 0 and then to use an associated autonomous planar vector field. The most useful properties of Crocco solutions appear to b...
full textAPPLICATION OF HPM AND HAM TO THE FIRST FORM OF BLASIUS EQUATION
In this work, the Blasius equation is studied. Homotopy perturbation method (HPM) and homotopy analysis method (HAM) are applied to obtain its solution. Comparison with variational iteration method (VIM) is made to highlight the significant features of employed methods and their capability of handling nonlinear problems. The outcome shows the success of (HPM) and (HAM) for solving nonlinear pro...
full textA numerical scheme for space-time fractional advection-dispersion equation
In this paper, we develop a numerical resolution of the space-time fractional advection-dispersion equation. We utilize spectral-collocation method combining with a product integration technique in order to discretize the terms involving spatial fractional order derivatives that leads to a simple evaluation of the related terms. By using Bernstein polynomial basis, the problem is transformed in...
full textthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولUnconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
full textA Numerical Method for Solving Stochastic Volterra-Fredholm Integral Equation
In this paper, we propose a numerical method based on the generalized hat functions (GHFs) and improved hat functions (IHFs) to find numerical solutions for stochastic Volterra-Fredholm integral equation. To do so, all known and unknown functions are expanded in terms of basic functions and replaced in the original equation. The operational matrices of both basic functions are calculated and em...
full textMy Resources
Journal title
volume 6 issue 2
pages 141- 156
publication date 2018-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023